锂离子电池电极过程一般经历复杂的多步骤电化学反应,并伴随化学反应,电极是非均相多孔粉末电极。为了获得可重现的、北京丝足保健能反映材料与电池热力学及动力学特征的信息,需要对锂离子电池电极过程本身有清楚的认识。

电池中电极过程一般包括溶液相中离子的传输,电极中离子的传输,电极中电子的传导,电荷转移,双电层或空间电荷层充放电,溶剂、电解质中阴阳离子,气相反应物或产物的吸附脱附,新相成核长大,与电化学反应耦合的化学反韦贤妃应,体积变化,吸放热等过程。这些过程有些同时进行,有些先后发生。

电极过程的驱动力包括电化学势、化学势、浓度梯度、电场梯度、温度梯度。影响电极过程热力学的因素包括理想电极材料的电化学势,受电极材料形貌、结晶度、结晶取向、表面官能团影响的缺陷能,温度等因素。影响电极过程动力学的因素包括电化学与化学反应活化能,极化电流与电势,电极与电解质相电位匹配性,电极材料离子、电子戈德拉星人输运特性,参与电化学反应的活性位密度、真实面积,离子扩散距离,电极与电解质浸润程度与接触面积,界面结构与界面副反应,温度等。

为了理解复杂的电极过程,一般电化学测量要结合稳态和暂态方法,通常包括3个基本步骤马跃大唐,如图1所示。

1 电化学测量概述

1.1测量的基本内容

电化学测量主要研究电池或电极的电流、电势在稳态和暂态的激励信号下随外界条件变化的规律,测量反映动力学特性的参数。

1.2测量电池的分类及特点电化学测量一般采用两电极电池或三电极电池,较少使用四电极电池。

1.2.1两电极电池如图2所示,蓝色虚线框所示是一个典型的两电谭启贤极电池的测量示意图,其中W表示研究电极,亦称之为工作电极(workingelectrode),C是辅助电极(auxiliaryelectrode),亦称之为对电极(counterelectrode)。锂电池的研究中多数为两电极电池,两电极电池测量的电压(voltage)是正极电势(potential)与负极电势之差,无法单独获得其中正极或负极的电势及其电极过程动力学信息。

1.2.2三电极电池与电极电势以及极化电流的测量图2是一个三电极电池示意图,W和C分湖南花鼓戏哭灵哭母亲别是工作电极和对电极(同上),R是参比电极(referenceelectrode)。W和C之间通过极化电流,实现电极的极化。W和R之间通过极小的电流,用于测量工作电极的电势。通过三电极电经侦大队办案问话流程池,可以专门研究工作电极的电极过程动力学。

由于在锂离子电池中,正极和负极的电化学响应存在较大差异,近年来通过测量两电极电池电压电流曲线,对曲线进行dQ/星光龙什么模式掉dV处理,结合熵的原位测量,也能大致判断电池的电流或电压响应主要是与负极还是与正极反应有关。

1.3参比电极的特性及门类参比电极的性能直接影响电极电势的准确测量,通常参比电极应具备以下基本特征:①参比电极应为可逆电极;②不易被黄振康极化,以保证电极电势比较标准和恒定;③具有较好的恢复特性,不发生严重的滞后现象;④18onlygirls具有较好的稳定性和重现性;⑤快速暂态测量时,要求参比电极具有较低的电阻,以减少干扰,提高测量系统的稳定性;⑥不同的溶液体系,采用相同的参比电极的,其测量结果可能存在差异,误差主要来源于溶液体系间的相互污染和液接界电势的差异。

常用的水溶液体系参比电极有可逆氢电极、甘汞电极、汞-氧化汞电极、汞-硫酸亚汞电极等;常用的非水溶液体系参比电极有银-氯化银电极、Pt电极以及金属锂、钠等电极。此外,也发生性关系可以用银丝、铂丝做准参比电极,或者采用电化学反应电位稳定的溶解于电解液的二茂铁氧化还原电对。关于准参比电极细节可参考A.J.Bard编著的《ElectrochemicalMethods》。

1.4研究电极的门类及特性电化学测量中常用的研究电极主要有固体电极、超微电极和单晶电极。一般电化学研究所指的的固体电极主要有Pt电极和碳电极。其中碳电极包括热解石墨、高定向热解石墨(HOPG)、多晶石墨、玻璃化碳、碳纤维等。固体电极在使用时需要对其表面进行特殊处理,以期达到较好的重复性。常规的处理步骤为:①浸泡有机溶剂,除去表面吸附有机物;②机械抛光,初步获取较高的表面光洁度;③电化学抛光,除去电极表面氧化层及残留吸附物质;④溶液净化,保证溶液的纯度,消除溶液中的杂质对测量结果的影响。

此外,超微电极和单晶电极以其独特的性质,近些年来也得到了较广泛的应用。前者可以快速获得动力学参数,且对待测材料的量要求很低,可以避免黏结剂、导电添加剂的干扰。后者可以精确获得溶剂吸脱附、表面结构、结晶取向等对电极过程动力学的影响。

在锂离子电池的研究中,固体电极包括含有活性物质的多孔粉末电极、多晶薄膜电极、外延膜薄膜电极、单颗粒微电极以及单晶电极等,多数测量时采用多孔粉末电极。

1.5电极过程电极过程一般情况下包括下列基本过程或步骤:①电化学反应过程:在电极/溶液界面上得到或失去电子生成反应产物的过程,即电荷转移过程;②传质过程:反应物向电极表面或内部传递或反应产物自电极内部或表面向溶液中或向电极内部的传递过程(扩散和迁移);③电极界面处靠近电解液一侧的双电层以及靠近电极内一侧的空间电荷层的充放电过程;④溶液中冯凡离子的电迁移或电子导体、电极内电子的导电过程。

此外,伴随电化学反应,还有溶剂、阴阳离子、电化学反应产物的吸附/脱附过程,新相生长过程以及其它化学反应等。

锂离子电池作为一种复杂的电化学体系,其电极过程同样具备上述几个基本步骤。其工作原理如图3所示。

针对不同的电极材料及电极体系,上述基本过程可简化为锂离子电池中离子和电子的传输及存储过程。所涉及的电化学过程有电子、离子在材料的体相、两相界面和(solidelectrolyteinterphase,SEI)的形成等过程。典型的电极过程及动力学参数有:①离子在电解质中的迁移电阻(Rsol);②离子在电极表面的吸附电阻和电容(Rad,Cad);③电化学双电层电容(Cdl);④空间电荷层电容(Csc);⑤离子在电极电解质界面的传输电阻(Rincorporation);⑥离子在表面膜中的输运电阻和电容(Rfilm,Cfilm);⑦电荷转移(Rct);⑧电解质中离子的扩散电阻(Zdiffusion);⑨电极中离子的扩散(Zdiffusion)——体相扩散(Rb)和晶粒晶界中的扩散(Rgb);⑩宿主晶格中外来原子/离子的存储电容(Cchem)绿妈妈;相转变反应电容(Cchem);电子的输运(Re)。

上述基本动力学参数涉及不同的电极基本过程,因而具有不同的时间常数。典型的电池中的电极过程及时间常数如图4所示。

1.6电化学极化的类型及其特征1.6.1极化的类型及其特征在施加了外来电场后,电池或电极逐渐偏离平衡电势的状态,称之为极化。在不具有流动相的电池中,存在着3种类型的极化:①电化学极化——与电荷转移过程有关的极化,极化的驱动力是电场梯度;②浓差极化——与参与电化学反应的反应物和产物的扩散过程有关的极化,极化的驱动力为浓度梯度;③欧姆极化——与载流子在电池中各相输运有关的极化,驱动力是电场梯度。

若还存在其它基本电极过程,如匀相或多相化学反应过程,则可能存在化学反应极化。

极化电势与平衡电势的差值的大小被称之为过电势。

1.6.2极化的影响因素各类极化的影响因素如下。(1)电化学极化的大小是由电化学反应速率决定的,电化学极化电阻(Rct)一度神灯的大小与交换电流密度(io)直接相关。受多种因素影响,包括电极电位、电极电位与电解质电化学势差、姜焕杏反应物与产物的活度、参与电化学反应的电极的真实表面积、结晶取向、有序度、表面电导、反应温度、催化剂催化特性、电化学反应的可逆性等。

电化学极化的电流与电势在一定的电流电压范围内一般符合Tafel关系,log(i)与过电势成正比。

(2)浓差极化与传质粒子的扩散系数有关。电池中的扩散过程可以发生在电极材料内部,多孔电极的孔隙中,以及电解质相中,参与扩散的可以是多种带电或中性粒子。涉及扩散的粒子流的流量一般符合菲克扩散定律,与扩散系数及浓度梯度有张紫妍生前被迫玩5p关。由于电池是非均相体系,扩散系数与浓度梯度是空间位置想入斐斐的函数,在电化学反应的过程中,会随时间变化。传质的快慢与传质距离的平方成正比。

浓差极化过电势hcon与电流i,极限电流il的关系符合对数关系,hcon=RT/nFln[(il-i)/il]。在过电势较小时,hcon=-RTi/nFil。

(3)欧姆极化的大小是由电池内部涉及到电迁移的各类电阻之和,即欧姆电阻决定的。欧姆极化过电势与极化电流密度成正比。

2 小结与展望

电化学表征技术在锂离子电池中有着非常广泛的应用,而电化学表征方法也非常之丰富,除了文中介绍的几种方法外,还有诸如 PSCA、CPR、CITT、RPG 等。随着实际应用的需要,新的电化学表征方法,特别是与其它表征技术结合形成的各类原位测量技术,正在迅速发展。

电极过程动力学研究的目的是获得能反映电极材料本征动力学特性的参数值,例如电荷转移电阻、扩散系数镇康打歌调、交换电流密度,膜电阻等,并掌握该参数值随不同充放电深度(嵌脱锂量)以及温度的变化,从而能够理解、模拟、预测各类工况下及充电过程中电池极化电阻、电容的变化规律。而实验室在基础研究时往往采用粉末电极,导致在不同材料之间可靠的比较动力学参数基本不可能非常精确,除非材料的尺寸、粒度分布、表面官能团、导电添加剂sama542、粘接剂、分散度、电极厚度、压实密度、体积容量得到了精确的控制和能实现高度的一致性。

相对于手工制作的电极,自动化设备制作的电极往往具有较好的一致性,更适合用来研究电极过程动力学。在基础研究时最好采用薄膜电极、微电极或单晶电极。

对于批量生产的电池,通过比较充放电曲线,分析直流极化电阻、固定频率的交流阻抗,开路电压等,可以获得表观的动力学参数,采用这些参数通过电化学模拟软件,可以将为准确的预测电池各类工况下的荷电态、极化电阻、输出功率,成为电源管理系统软件的核心内容 。

事实上,锂离子电池涉及的电化学为嵌入电极电化学,有别于传统的电极不发生结构演化,电化学反应主要发生在电极表面的溶液电化学。电化学双电层(EDL)与空间电荷层(SCL)共存,在充放电过程中,离子将穿过 EDL 与 SCL,电荷转移往往发生在电极内部而非表面,电极为倪萍,若是如此,河南农业大学混合离子导体,电化学反应伴随着相变和内部传质,这与一般教科书上描述的的电化学反应体系、研究方法、数学模型存在显著差异,需要发展新的理论与实验方法。

文章摘自Energy Storage Science and Technology(储能科学与技术),2015,4(1),(凌仕刚,吴娇杨,张舒,高健,王少飞,李泓,中国科学院物理研究所)